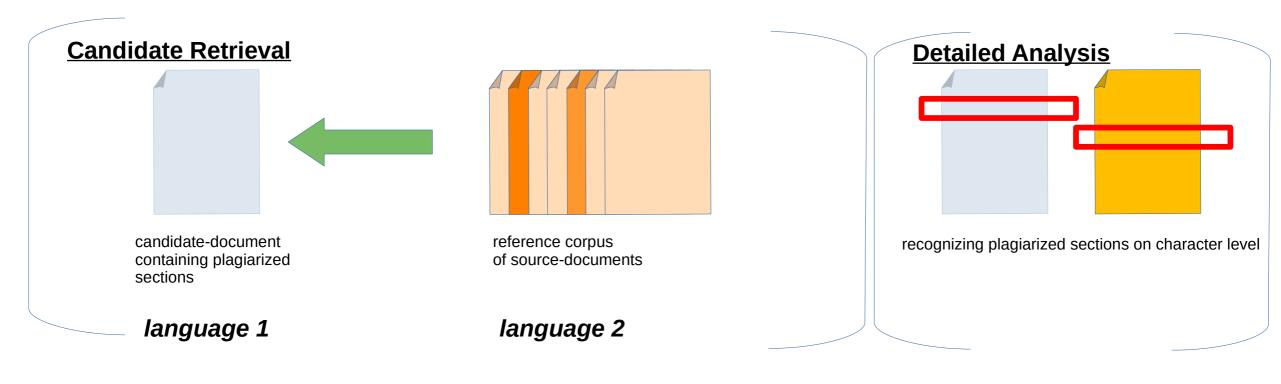


Authors: Johannes Stegmüller*, Fabian Bauer-Marquart*, Norman Meuschke, Moritz Schubotz, Terry Ruas, Bela Gipp

Detecting Cross-Language **Plagiarism using Open Knowledge** Graphs

Presenter: Johannes Stegmüller

 Venue: 2nd Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE2021) at JCDL 2021 (Online)

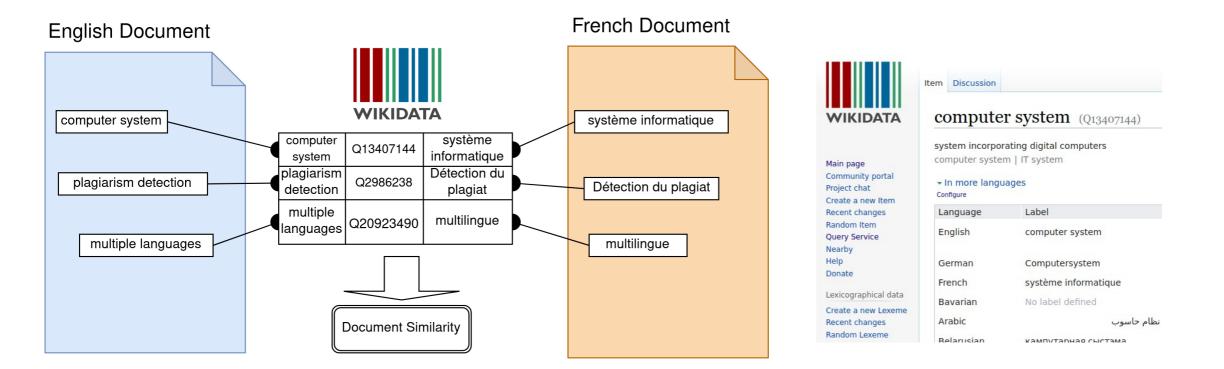


BERGISCHE UNIVERSITÄT VUPPERTAL

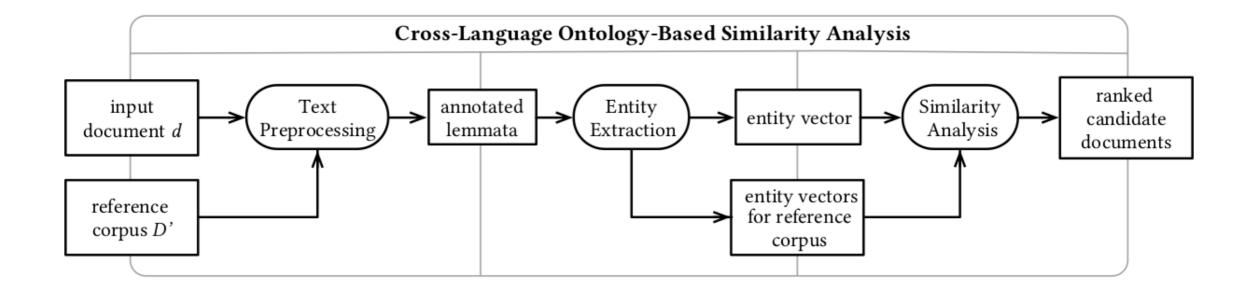
*contributed equally

Multilingual Plagiarism Detection

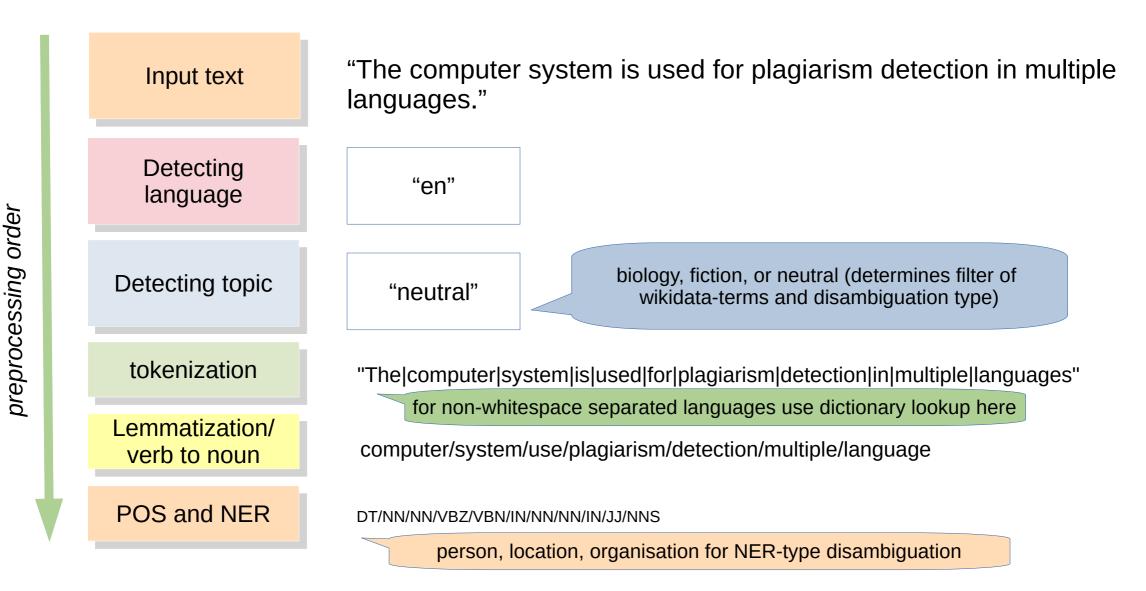
• What is multilingual plagiarism detection?

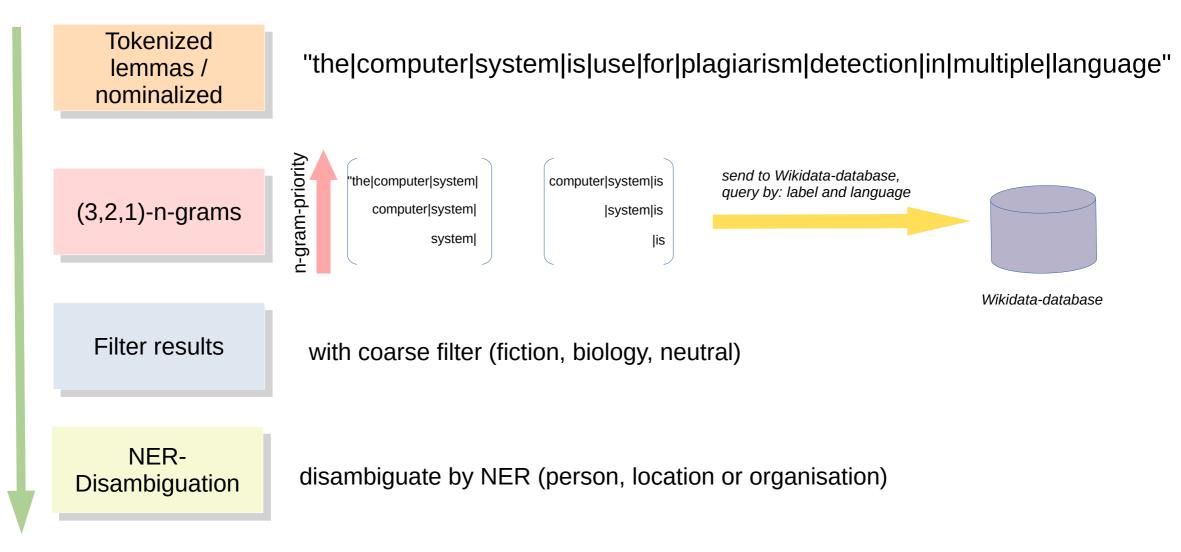


What is CL-OSA?


How does CL-OSA detect multilingual plagiarism ?

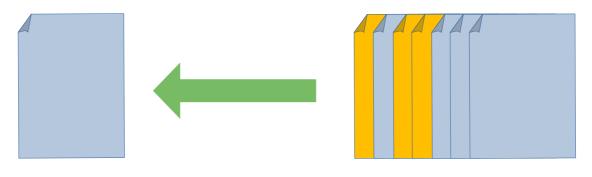
English candidate document: "The computer system is used for plagiarism detection in multiple languages."


French source document: "Le système informatique est utilisé pour la détection de plagiat multilingue."


Overview of CL-OSA

CL-OSA Entity Extraction

CL-OSA Entity Disambiguation

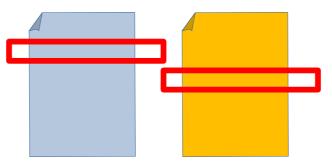

	English Docu	ment: " Bas	s is a name	shared by many	species of fish	. "	
		E	Example Tok	en: "bass"			
			[The document also contains 'fish' so this disambiguation has more weight
Label	Entity-id	Ances tor level		Label	Entity-id	Ances tor level	
"bass"	Q27911	0		"bass"	Q1224135	0	
"voice"	Q17172850	1		"fish"	Q152	1	
"voice"	Q7390	2		"aquatic	Q1756633	2	
"animal vocalization"	Q97234227	3		animal" "animal"	Q729	3	

This entity is selected!

Overview of CL-OSA: Similarity Scoring

- The entities for each document are denoted as vectors
- Scoring similarity is done by applying boolean weight to the term frequency
- The similarity of a candidate to a source vector (d≥ to d'≥) is calculated by cosine-similarity

$$\varphi(\mathbf{d}_{\gg},\mathbf{d}_{\gg}') = \frac{\mathbf{d}_{\gg} \cdot \mathbf{d}_{\gg}'}{||\mathbf{d}_{\gg}|| \, ||\mathbf{d}_{\gg}'||}$$



candidate-document

reference corpus of source-documents

- Evaluation of Candidate Retrieval Task
 - MRR: Mean Reciprocal Rank is used as metric
 - Four multilingual corpora in EN, ES, JA, ZH, FR are used

MRR (%)	PAN-PC-11	ASPEC-JE	ASPEC-JC	JRC Acquis	Europarl	
	(ES-EN)	(JA-EN)	(JA-ZH)	(EN-FR)	(EN-FR)	
CL-OSA	91.38	71.92	78.21	97.68	55.47	
ConceptNet	78.67	33.03	15.21	93.85	38.73	
USE-ML	34.46	26.64	72.84	71.71	45.59	
CL-ASA	59.44	64.92	0.43	33.16	28.29	
CL-ESA	1.20	5.86	0.42	0.41	0.41	

- Evaluation of Detailed Analysis Task
 - The evaluation metric by Salvador et al. [1] (CL-KGA) is used.
 - This uses sliding window with merging algorithm to create consistent plagiarism cases
 - PAN-PC-11 (EN-ES and EN-DE) partitions are used as corpora
 - Metrics are 'Plagdet' (Q), Recall (R), Precision (P) and Granularity (G) from PAN-PC evaluation

$$Q = \frac{F_1}{\log_2\left(1+G\right)},$$

where F_1 represents the harmonic mean of Precision and Recall

Evaluation: Detailed Analysis Results

	Spanish-English				German-English				
Model	Q	Р	R	G	Q	Р	R	G	
CL-OSA	0.573	0.723	0.474	1.000	0.521	0.672	0.425	1.000	
CL-KGA	0.620	0.696	0.558	1.000	0.520	0.601	0.460	1.004	
CL-VSM	0.564	0.630	0.517	1.010	0.414	0.524	0.362	1.048	
CL-ASA	0.517	0.690	0.448	1.071	0.406	0.604	0.344	1.113	
CL-ESA	0.471	0.535	0.448	1.048	0.269	0.402	0.230	1.125	
CL-C3G	0.373	0.563	0.324	1.148	0.115	0.316	0.080	1.166	
XCNN	0.386	0.738	0.310	1.189	0.270	0.664	0.196	1.174	
S2Net	0.514	0.734	0.440	1.098	0.379	0.669	0.304	1.148	
BAE	0.440	0.736	0.360	1.142	0.212	0.482	0.150	1.120	

 \succ Results for methods other than CL-OSA are taken from [20].

Boldface indicates the best PlagDet score for each corpus subset.

➤ Column Labels: PlagDet score (Q), Precision (P), Recall (R), Granularity (G)

Evaluation: Detailed Analysis Results

		Spanish-English				German-English			
Obfuscation Type	Model	Q	Р	R	G	Q	Р	R	G
	CL-OSA	0.413	0.506	0.349	1.000	0.370	0.475	0.303	1.000
	CL-KGA	0.139	0.158	0.124	1.000	0.169	0.207	0.143	1.000
	CL-VSM	0.102	0.121	0.088	1.000	0.109	0.147	0.086	1.000
Translated	CL-ASA	0.100	0.146	0.076	1.000	0.085	0.137	0.062	1.000
manual	CL-ESA	0.092	0.107	0.081	1.000	0.078	0.122	0.057	1.000
obfuscation	CL-C3G	0.072	0.104	0.054	1.000	0.042	0.053	0.035	1.000
	XCNN	0.077	0.116	0.058	1.000	0.085	0.160	0.058	1.000
	S2Net	0.091	0.141	0.067	1.000	0.115	0.173	0.086	1.000
	BAE	0.085	0.191	0.055	1.000	0.088	0.113	0.072	1.000
	CL-OSA	0.584	0.733	0.485	1.000	0.533	0.684	0.434	1.000
	CL-KGA	0.660	0.742	0.595	1.000	0.556	0.642	0.493	1.004
	CL-VSM	0.603	0.673	0.553	1.011	0.445	0.562	0.391	1.053
Translated	CL-ASA	0.552	0.736	0.479	1.077	0.439	0.652	0.373	1.125
automatic	CL-ESA	0.503	0.571	0.479	1.052	0.288	0.431	0.247	1.137
obfuscation	CL-C3G	0.398	0.602	0.347	1.160	0.122	0.343	0.085	1.183
	XCNN	0.412	0.791	0.331	1.205	0.289	0.715	0.210	1.191
	S2Net	0.550	0.784	0.471	1.106	0.406	0.719	0.326	1.164
	BAE	0.470	0.781	0.386	1.154	0.224	0.520	0.158	1.132

 \succ Results for methods other than CL-OSA are taken from [20].

➤ **Boldface** indicates the best PlagDet score for each corpus subset.

≻ Column Labels: PlagDet score (Q), Precision (P), Recall (R), Granularity (G)

Benefits of CL-OSA

- No machine translation which uses parallel corpora is required
- It doesn't require pre trained language models
- Knowledge-base can be kept up to date, Wikidata license
- Amount of entities is constantly increasing in most languages

Outlook

- Investigate performance in Detailed Analysis Task (performance by obfuscation, caselength)
- Investigate performance in terms of hardware requirements and timings
- Optimize the weighting scheme for CL-OSA (i.e. TF/IDF instead of binary weights)

References and Sources

[1] PAN-PC-11: Martin Potthast, Benno Stein, Andreas Eiselt, Alberto Barrón-Cedeño, and Paolo Rosso. 2011. PAN Plagiarism Corpus 2011 (PAN-PC-11). https://doi.org/10.5281/ ZENODO.3250095

[2] CL-KGA and Evaluation Method: Marc Franco-Salvador, Parth Gupta, Paolo Rosso, and Rafael E. Banchs. 2016.

Cross-Language Plagiarism Detection Over Continuous-Space- and Knowledge Graph-Based Representations of Language. Knowledge-Based Systems 111 (Nov. 2016), 87–99. https://doi.org/10.1016/j.knosys.2016.08.004

[3] Wikidata-Logo https://commons.wikimedia.org/wiki/File:Wikidata-logo-en.svg[4] Bass on Wikipedia https://www.wikidata.org/wiki/Q1224135#/media/File:Micropterus_dolomieu.jpg

Thank You

Contact:

Johannes Stegmüller

stegmueller@gipplab.org

Twitter: <a>@hyper_node

